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Spies in the minority game
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We study the effects of the existence of another type of agents, called spies, in the minority game (MG).
Unlike the normal agents in the MG, the spies do not carry any strategy. Instead, they decide their action by
scouting some normal agents and take the minority action of the spied group. For a few spies and when there
is useful information in the normal agents’ actions, the spies can avoid the crowd effect of the normal agents
and win more readily. When information becomes less useful and when more spies are present, the spies’
crowd effect hurts the success rate of the spies themselves, and the normal agents could have a higher success
rate than the spies. More spies actually assist more normal agents to win, as the spies also provide more
winning quotas. This leads to a nonmonotonic behavior in the total success rate of the population as a function

of the fraction of spies.
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I. INTRODUCTION

The Minority Game (MG) is a popular model in studying
adaptive complex systems [ 1-4] and its variations have been
applied to different areas such as to simulate the behavior in
financial markets [5]. It is related to the so-called El Farol
bar problem [6] in which a number of people decide weekly
whether to enjoy a drink in a bar or to stay home without
getting into a crowd in the bar. The MG is a simpler binary
version in which agents compete for a limited resource. In
the original MG [1], a population of an odd number of N
agents decide between two possible choices, say to attend
room “0” or to attend room “1,” at each round of the game.
The agents belonging to the minority group, say those in
room “0,” are the winners in that round. The winning action
(take room “0”) is announced to all agents and thus serves as
the common information or history bit string. The agents
decide based on the most recent m winning outcomes. In
each round, the agents decide according to the prediction of
best performing strategy in hand. A strategy maps every pos-
sible m-bit winning outcomes to a prediction. Therefore,

there are 22" possible strategies in the whole pool of strate-
gies or full strategy space. At the beginning of the game,
each agent randomly picks S strategies from the pool, with
repetition allowed. The performance of a strategy reflects
how successful it is to predict the winning outcome from the
beginning of the game. Note that the best performing strat-
egy of an agent changes with time. This rather simple model
shows nontrivial properties [3,7,8]. For example, the number
of agents making a particular decision (“0” or “1”) fluctuates
in time. The standard deviation ¢ shows a nonmonotonic
dependence on m, with a large value at small m and ap-
proaching the random coin-toss limit at large m. For inter-
mediate value of m, there is a minimum in o [7,9,10] signi-
fying a collective performance of the system that is better
than random. The nonmonotonic behavior of o can be ex-
plained analytically by the crowd-anticrowd theory [11,12]
and by tracing the strategy performance ranking patterns as
in the strategy ranking theory [13,14].
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The large value of o at small m implies a wastage of
resource and more agents could have won. Attempts have
been made to improve the performance of the population. A
key idea is to avoid overadaptation and thus the formation of
a big crowd making the same decision. This can be achieved,
for example, by having a biased pool of strategies [15] or by
local-formation sharing through a network [14,16]. An alter-
native way is to allow for an inhomogeneous population with
two or more types of agents. For example, systems with a
mixed population having a different number of strategies or
values of m [17] and with some agents who participate ran-
domly into the game [18] show a higher overall success rate.
The reasons are that an inhomogeneous population tends to
mess up the history bit string that leads to crowd formation
and having agents responding to the history differently fur-
ther avoids crowd formation. Having some agents who do
not use the MG strategies and instead decide by an intelli-
gent trial and error method, Xie and Wang [19] showed that
one could achieve global optimization with o taking on the
possible minimum value. Mimicking a kind of agents called
contrarians in real markets, Zhong et al. [20] showed en-
hanced performance in a mixed population with normal MG
agents and contrarians, who take the opposite action of what
the best strategy predicts.

In real-life scenarios, it is unrealistic to have a population
with all agents following the rules of a game. Some agents
may be smarter or they may simply cheat. Here, we study a
mixed population consisting of normal MG agents and a
group of agents who do not carry any strategy. These agents,
called spies, can collect information from a portion of nor-
mal agents and decide by analyzing the information. It is
shown that their presence could enhance the overall success
rate of the population. In Sec. II, we present our model and
introduce the action of the spies. In Sec. III, we present re-
sults of numerical simulations of our model and analyze the
results within a phenomenological theory. A summary of the
results is given in Sec. IV.
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II. MODEL

Consider an inhomogeneous population with a total of
N=N,+N; agents playing the Minority Game, with N being
an odd number. In each round, the winners are those in the
minority group. There are thus, in principle, a maximum of
(N-1)/2 winners per round. There are N, normal MG
agents, i.e., they hold § strategies from the full strategy space
each of which maps the most recent m-bit history into a
prediction, and decide based on their temporarily best-
performing strategy. They have no information on the action
of the other agents except for the publicly available history
bit string. There are N, agents who do not hold any strategy.
They are referred to as “spies.” In each round, each of these
agents is assumed to have the ability to randomly pick a
group of k normal agents and look at what their actions are.
With this information and the intention to win, a spy decides
the action by taking the minority side of his observed k group
of normal agents. Note that the minority side of the k group
that a spy observes may not be the actual winning side. The
k group for each spy, who chooses the normal agents to be
spied upon entirely at random, serves to provide local infor-
mation. The spies are assumed to act independently, i.e.,
there is no communication among the spies. The fact that
real-world spies receive orders from a central agency and
thus may act in a correlated way is not considered here. The
performance of the system is expected to depend on the
value of k and the number of spies N, in addition to m and S
as in the basic MG. If & is too small, the information may not
be useful. If N, is large, the market impact of the spies them-
selves becomes important as the spies could lead to severe
crowd effect.

Our model presents a different inhomogeneous population
than in other models. Here, the spies can get hold of the
forthcoming actions of a number of randomly selected nor-
mal agents. They do not hold any strategy and they do not
adapt by learning from past experience. In other local minor-
ity games [21-23], some agents can exchange information on
their past decisions with their neighbors, and an agent can
follow the prediction of the neighbors with the best cumula-
tive performance. Here, the spies can look at different groups
of k normal agents in each turn and there are no fixed neigh-
bors. Thus the model is also different from networked MGs
in which an agent has a few fixed neighbors during the game.
These agents thus mimic those persons in real market situa-
tions who collect, sometimes illegally, and act based on in-
sider information.

III. RESULTS AND DISCUSSIONS

We study a system with N,=101 normal agents. We de-
fine p,=N,/N to be the fraction of spies and p,=k/N, as the
extent to which the normal agents are being spied upon for
information. The normal agents carry S=2 strategies, which
are picked at the beginning randomly from the full strategy
space. A normal agent decides his action based on the pre-
diction of the best-performing strategy that he has in hand at
the moment of decision. We aim to study how the existence
of spies affects the global performance of the system such as
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FIG. 1. (Color online) (a) The standard deviation ¢, in the num-
ber of agents making a particular decision, regardless of the type of
agents, as a function of m for different values of the fraction p; of
normal agents from which a spy could collect information. The
fraction of spies is fixed at p,=0.09. (b) The standard deviation o,
considering only the decisions of the normal agents, who played in
a game together with the spies.

o and the success rates. From the winning criterion of the
MG, several quantities can be used to characterize the per-
formance of the whole system. They include the standard
deviation of the number of agents in the winning group, the
standard deviation of the number of agents making a particu-
lar decision (either “0” or “1”), the standard deviation of the
difference in the number of agents making opposite deci-
sions, and the average winning probability. By recording the
total number of agents making a particular decision, i.e., re-
gardless of normal agents or spies, over time, the corre-
sponding standard deviation o, can be calculated. Figure 1(a)
shows the standard deviation o, as a function of m for dif-
ferent values of p,. The number of spies is fixed at 10 and
thus p,=0.09. The behavior is typical of systems with a small
fraction of spies. The simulation results are obtained by av-
eraging over 100 independent runs with different initial dis-
tributions of strategies among the normal agents and differ-
ent initial histories in starting a run. Results of the basic MG
are also shown for comparison. In the basic MG, a higher o,
implies that the agents do not make full use of the available
winning quotas and a smaller o, implies that the number of
winners is close to the allowed value. Comparing the results
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with that of the basic MG, the existence of a few spies leads
to a lower o,, indicating an improved performance of the
system as a whole. The increase in performance is most no-
ticeable for small values of m. With two types of agents, it is
useful to look at whether the existence of spies changes the
behavior of the normal agents. Figure 1(b) shows the stan-
dard deviation o, in the number of normal agents making a
particular decision, again for p;=0.09. The results show that
the collective behavior of the normal agents alone is largely
unchanged and follows that of the basic MG with 101 agents.
This indicates that a few spies do not disturb significantly the
history bit string that is dominated by the actions of the
normal agents. Without disturbing the behavior of the normal
agents, the few spies may benefit from knowing the actions
of the normal agents. The larger the k group being watched,
the more useful information it is. In the MG, there is infor-
mation in the history bit string and thus the actions of the
agents in the small m regime. This information, however,
leads to a severe crowd effect and thus a large o, in the basic
MG. In other words, there are fewer winners than allowed
and there are available winning quotas left. The spies can
exploit the information and make use of these remaining
winning quotas. In addition, the spies also add to the winning
quotas in the game. Thus the spies’ success will not hurt the
normal agents’ winning, leading to an overall enhancement
in performance. For an intermediate value of m where o, in
the basic MG shows a minimum, the number of normal agent
winners is close to N,,/2 with only a few winning quotas left.
The information obtained by the spies becomes less useful.
The spies add some winning quotas to the game. However,
these quotas can be used by both the normal agents and the
spies. For large m, the situation is close to intermediate m.
The information for the spies is not useful. The spies create
more winning quotas that can be used by both the normal
agents and the spies themselves. If the “spies” just replicate
some of the agents, the results will be different. For example,
if each spy simply follows a single normal agent and differ-
ent spies are allowed to follow different normal agents, the
crowd effect is more severe and thus o, is larger than the
original MG. If we introduce instead a kind of agent who
plays one of his strategies randomly in every turn, these
agents can sometimes avoid the crowd effect, but sometimes
enhance the crowd effect. The action of the spies in the
present model is based on the intention to avoid the “crowd”
using the limited information collected in the k group being
spied upon.

As the number of spies in the population increases, the
situation becomes more complicated. There are several ef-
fects. The size of the whole population is increased and
hence the possible number of winners allowed by the MG
also increases. The spies are making rooms for themselves
and the normal agents to win. In addition, the market impact
of the spies enhances, i.e., the actions of the spies become
increasingly important in deciding the actual winning out-
come. This in turn leads to a crowd effect due to the spies.
The history bit-string of the game will then be different from
that in the basic MG, due to the presence of the spies. Figure
2 shows the standard deviation o, as a function of m, for
different values of the fraction of spies p,. The spies scout
k=20 normal agents. When there is no definite action sug-
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FIG. 2. (Color online) (a) The standard deviation o; of the
whole population as a function of m, for different fractions of spies
ps in the population. The spies could collect information from &
=20 normal agents (p;=0.17). (b) The standard deviation o, con-
sidering only the decisions of the normal agents, who played in a
game together with the spies.

gested by the k group, a spy decides the action randomly. For
small m, as the number of spies increases, the averaged stan-
dard deviation o, decreases for small fractions of spies then
increases at large fractions of spies [see Fig. 2(a)]. The stan-
dard deviation o, deviates from that of the original MG
when the fraction of spies becomes large. It is found that at
p,=0.23, g, starts to deviate from the behavior in the origi-
nal MG, especially in the intermediate range of m [see Fig.
2(b)], where the low o, in the original MG takes on a large
value.

Next, we study the success rate, which is the winning
probability per agent per turn, in the system. It will be inter-
esting to see how the presence of spies affects the success
rates of the normal agents and the spies themselves. In Figs.
3(a)-3(c), we show the success rate of the normal agents R,
and the success rate of the spies R, as a function of increas-
ing fraction of spies p, in the population, for three different
values of m=2, 6, and 10 that correspond to different re-
gimes in the basic MG. The spies can scout k=20 normal
agents. For m=2 [Fig. 3(a)], the success rate R, among the
normal agents remains almost a constant, which is about 0.4
as in the basic MG, when the number of spies is small and
the success rate R, among the spies is quite high (~0.7).
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FIG. 3. (Color online) The success rates of the normal agents
(squares) and spies (circles) as a function of the fraction of spies p;
for (a) m=2, (b) m=6, and (c) m=10. (d) The success rate R, of the
whole population, regardless of the type of agents, as a function of
p, for the three values of m.

Therefore when there are only a few spies, they can really
exploit the information provided by the normal agents. For
small m, the normal agents have a severe crowd effect, lead-
ing to a small success rate of about 0.4. This leaves some
winning quotas unused. By avoiding the crowd of normal
agents, the few spies win more readily. Note that even if all
the spies act the same way, the winning quotas left by the
normal agents and created by the spies themselves are suffi-
cient to accommodate them when the number of spies is
small. However, as the fraction of spies increases to p;
~0.25, R, increases and R, drops abruptly. Too many spies
in the population create a crowd effect of the spies. For m
=2, while the spies know of the minority decision of a k
group of normal agents, they may decide collectively to
choose a particular decision. The decision would have been
the winning decision, without counting the spies. With many
spies, however, the spies’ decisions may jeopardize their own
success rate as their actions turn the would-be winning deci-
sion into a losing majority decision. Accompanying with this
effect is that the winning history bit string is also changed by
the presence of the spies. This actually helps the normal
agent, as the history bit string in the basic MG affects the
strategies’ performance and leads to the severe crowd effect.
As a result, R, drops as p, becomes large. The majority
would-be losers in the normal agents become winners and R,
increases. For p,=0.5, R, drops to nearly zero indicating that
all the spies are losers and R, increases to a value above 0.7.
For m=6 [see Fig. 3(b)], the normal agents in the original
MG have a higher success rate of R,==0.46. This makes the
spies harder to win through their collected information, as
different k groups will suggest different minority decisions;
and there are not too many winning quotas left by the normal
agents. More spies will lead to a crowd effect of the spies
and actually make room for more normal agents to win. Thus
the spies lose the game more often than normal agents on
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average. For m=10 [see Fig. 3(c)], the original MG is in the
random coin-toss limit. The information provided to the
spies is not useful. For small p,, both the spies and the nor-
mal agents make use of the unused winning quotas. For more
spies, their presence usually slips what would be the winning
(losing) action into the losing (winning) action. Their success
rate R, thus drops with their number. Their presence makes
room for more winners and the normal agents take advan-
tage. As a result, R, increases with p,. Spies will succeed
only when there are a few of them. Too many spies create a
crowd effect among the spies that benefits the normal agents.

To study the performance of the system as a whole, the
success rates R, of the whole population, regardless of the
types of agents, for m=2, 6, and 10 are shown in Fig. 3(d). R,
exhibits a peak at some value of p,, which depends on the
value of m. This feature can be explained as follows. Since
the spies randomly choose k (k<<N,) normal agents to col-
lect information, their success rate then is related to the suc-
cess rate R, of the normal agents. Therefore we may express
R, as a function of R, of the following form:

Ry(m,p,) = F(R,(m,p,))
k/2—-1

= > CiR,(m,p))1 =R, (m,p) ]
i=0

1
+ 5 CPRmp ) L1 =R, (mp) T2, (1)

when k is an even number and

R(m,p,) = F(R,(m,p,))
(k=1)12

>

i=0

{(R,(m,p)) 1 =R, (m,p)17,  (2)

when k is an odd number. The first term of the right hand
side of Eq. (1) is the probability for a spy selecting the
would-be winning decision predicted by the normal agents
after he scouts the k group of normal agents. The second
term is the probability for a spy selecting the would-be win-
ning decision when the k group shows a tie. The right hand
side of Eq. (2) shows the case when k is an odd number. The
success rate R, can be obtained by

R/(m,py) = p,R,(m,p,) + p;Ry(m,p,). 3)
Substituting of Egs. (1) or (2) into Eq. (3), we get
R/(m,py) = p,R,(m,py) + p;F (R, (m,p,)). (4)

When p, is small, we assume that R,(m,p,)=R,(m,0),
which is the success rate in the basic MG. The total success
rate R,(m, p,) will show a linear behavior with the increase of
p,. Substituting R,(m,0) into Eq. (4), we get

Rl(m’ps) = ann(m’O) + psF(Rn(m9O))’ (5)

for small p,. As an example, we plot the case of m=2 [left
solid line in Fig. 3(d)], which fits well to the simulation data
by taking R,(m=2,0)=0.406.

When p, is large, R,(m,p,) takes on another constant
value because the many spies often choose the losing action.
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Thus Eq. (4) predicts another linear behavior when p, is
large. As an example, the right solid line in Fig. 3(d) is
plotted by substituting R,(m=2,0.5)=0.724, which is ob-
tained in Fig. 3(a), into Eq. (4). The results agree with the
total success rate obtained numerically.

An estimate of the value of p,, where the total success rate
peaks, can be found by solving the following equation:

puR,(m,0) + pF(R,(m,0) = p,(1 - R,(m,0))
+ p_;(l - F(Rn(m90))7 (6)

which implies that the numbers of agents choosing the two
possible decisions are nearly the same. The solution gives

1 - 2R, (m,0)

T 1—2F(R,(m,0 )" ™

ps=

Substituting R,(m=2,0)=0.406, R,(m=6,0)=0.481, and
R,(m=2,0)=0.463, which are obtained from the simulation
data, into Eq. (7), we get p:=0.24, 0.22, and 0.22 for m=2,
6, and 19, respectively. Comparing to the simulation results,
where p =0.25, 0.23, and 0.21 for m=2, 6, and 10, respec-
tively, we find Eq. (7) is a good approximation to describe
the peak character when p, increases.
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IV. SUMMARY

In summary, we studied the minority game in an inhomo-
geneous population consisting of normal agents and some
spies. The spies do not carry any strategy. Instead, they de-
cide their action by scouting a selection of k normal agents
and take the minority action of the k group. For a few spies
and small values of m, there is useful information by scout-
ing the normal agents and the spies attain a higher success
rate than the normal agents. For an intermediate value of m
(near m=6), the information of the normal agents becomes
less useful and the crowd effect of the spies hurts the success
rate of the spies themselves. As a result, the normal agents
have a higher success rate than the spies. More spies actually
assist more normal agents to win, as the spies also provide
more winning quotas. When half of the population are spies,
the success rate of the spies becomes very low, for the whole
range of m studied. The total success rate over the population
shows a nonmonotonic behavior as a function of the fraction
of spies in the population.
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